
# **INTRODUCTION**

- Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful method for relaying information on protein dynamics, protein-ligand interaction and protein structure interpretation.
- The methods for collecting HDX-MS are relatively straightforward and can be achieved on a relatively short timescale. In contrast, HDX-MS data analysis and visualization, if done manually, can require many times more labor than that involved in data collection.
- Here we present a new software application that automates all major steps in HDX-MS data analysis and visualization.
- Important aspects of the software include: forward-looking flexibility to allow alternative data inputs and data analysis workflows, auto-building peptide lists using MASCOT search result output, and ability to automate MS/MS data analysis.

#### **METHODS**

- HYDRA was developed in .NET 3.0 using C# and the Windows Presentation Foundation (WPF). The software architecture allows different data inputs and data analysis scenarios to be plugged-in with minor changes to the software's code. Currently, the software supports the use of Analyst QS 1.1 for data input. Future iterations of HYDRA will allow the analysis of mzXML data.
- HYDRA workflow and performance were demonstrated using data on bottom-up HDX-MS experiments on calmodulin, performed on a QSTAR Pulsar i QqTOF instrument operated under turboionspray mode. A total of 18 runs were collected – triplicate analysis of two calmodulin states, under three labeling conditions (10%, 50%, 75% D2O labeling). See our poster ThP497 for additional details.
- Theoretical isotopic distributions were calculated using the .NET library provided by PNNL's Molecular Weight Calculator.
- Linear Least Squares calculations for deuterium distribution calculations were made using the .NET library from Lutz Roeder's Mapack for .NET.<sup>2</sup>

# **WORKFLOW:**



#### SAMPLE PROJECT: HDX-MS analysis of apo-CaM vs holo-CaM

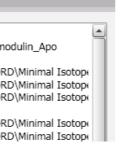
Goal: Use HYDRA to fully automate HDX-MS analysis of apo-calmodulin (apo-CaM) vs. holocalmodulin (holo-CaM)

| Automated<br>Analysis<br>ncludes: | <ol> <li><u>'One-click' data processing</u></li> <li>XIC generation</li> <li>XIC smoothing</li> <li>XIC peak selection</li> <li>MS generation</li> <li>MS smoothing</li> </ol> | <ul> <li>Isotop</li> <li>Theoretail</li> <li>Calcu</li> <li>Centre</li> <li>Label</li> </ul> |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                   | 2) <u>Aggregate statistics</u><br>• Average SD                                                                                                                                 | • Stude<br>for in<br>prote                                                                   |
|                                   | 3) Tabular & graphical repres                                                                                                                                                  | entation of                                                                                  |

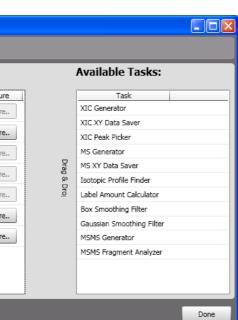
#### **Project Stats**

| Total MS spectra<br>evaluated | 378 |                                |
|-------------------------------|-----|--------------------------------|
| Peptides analyzed             | 21  | 96% Sequence<br>ThP497 for det |
| Replicates                    | 3   |                                |
| Labeling conditions           | 3   | Labelled in 109                |
| Protein States                | 2   | apo-CaM vs ho                  |

#### **PROJECT CONFIGURATION:**

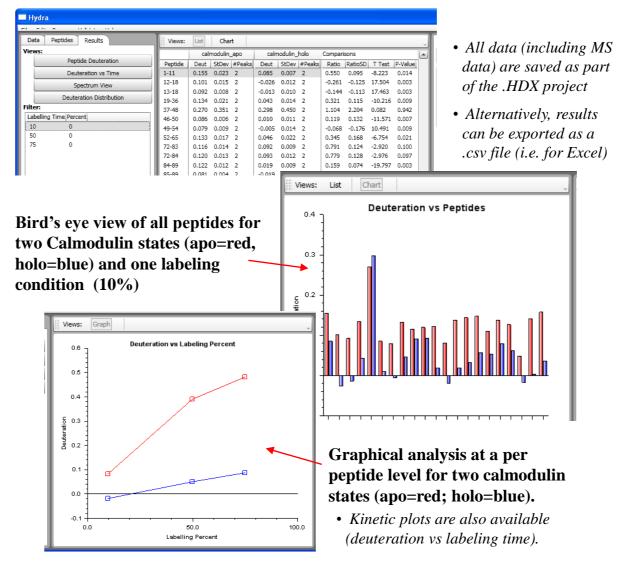

| • Step 1: Define project's Protein                                                                                           | New Proj              | ect - Run                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| States and Labeling conditions<br>& associate individual<br>experiments                                                      |                       | New Project<br>in State: Calm<br>belling: 2 ()<br>Run: D:\GOR<br>Run: D:\GOR<br>Run: D:\GOR<br>belling: 4 ()<br>Run: D:\GOR |
| Build peptide list from Mascot                                                                                               |                       | Run: D:\GOR                                                                                                                 |
| Build Peptide list from Mascot                                                                                               | hRe Select file       | • Step                                                                                                                      |
|                                                                                                                              | Jaidee me             | prev                                                                                                                        |
| Process                                                                                                                      |                       | buil                                                                                                                        |
| Protein hit list:                                                                                                            |                       | sear                                                                                                                        |
| "Calmodulin - Gallus gallus (Chicken)."                                                                                      | -                     | show                                                                                                                        |
| Protein Score = 1082<br>Total Peptides = 34<br>Options<br>Add list to current peptides in project<br>Start PeptideID's at: 1 | Configure             | Processing                                                                                                                  |
| Cancel                                                                                                                       |                       |                                                                                                                             |
|                                                                                                                              | Task<br>XIC Generator | Configu                                                                                                                     |
| Step 3: Build the data processing                                                                                            | Gaussian Smoothir     | ng Filter Configu                                                                                                           |
| workflow using available                                                                                                     | XIC XY Data Saver     | Configu                                                                                                                     |
| algorithms/tasks.                                                                                                            | XIC Peak Picker       | Configu                                                                                                                     |
| 0                                                                                                                            | MS Generator          | Configu                                                                                                                     |
| Configure each task as desired                                                                                               | Isotopic Profile Fin  | der Configu                                                                                                                 |
| New or alternate tasks are easily<br>added to workflows (i.e.<br>alternate smooths, baseline<br>subtraction, etc.).          | Label Amount Calc     | zulator Configur                                                                                                            |
|                                                                                                                              | Save as Template      | oad from Template                                                                                                           |

# HYDRA: a flexible software package for 'one-click' HDX-MS data analysis

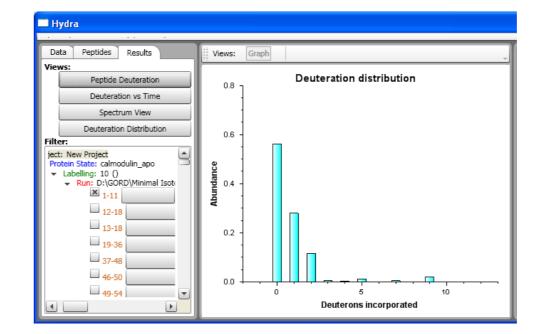

Gordon W. Slysz, CJ Baker, Benjamin M. Bozsa, Anthony Dang, David C. Schriemer Dept. Biochem. and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada

- pic profile extraction pretical isotopic distribution ulation
- troid mass calculation el incorporation calculation
- ent's T-test and p-value reporting ndicating differences between two ein states
- of the data (see below)

| olo-CaM                      |
|------------------------------|
| %, 50%, and 75% $D_2O$       |
|                              |
| coverage; see poster<br>ails |
|                              |




p 2: Either import / merge a vious peptide list (.csv) or ild a list from a Mascot urch result (.csv format) as wn to the left.




# **DATA VISUALIZATION**

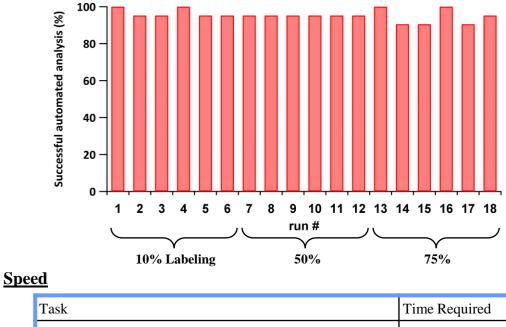
#### Table showing aggregate statistics for each protein state and labeling condition

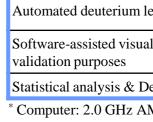


# **DATA ANALYSIS: Deuterium Distribution**



• HYDRA includes deuterium distribution analysis based on the linear least squares method described by Chik et al, 2006.<sup>3</sup> This allows greater insight into deuterium incorporation and may help resolve HDX-MS data for peptides that exist in multiple states


#### **REFERENCES:**


- 1. Molecular Weight Calculator. http://ncrr.pnl.gov/software/
- 2. Lutz Roeder's Mapack for .NET: <u>http://www.aisto.com/roeder/dotnet</u>
- . Chik JK, Graaf JLV, Schriemer DC (2006). Quantitating the statistical distribution of deuterium incorporation to extend the utility of H/D exchange MS data. Analytical Chemistry. 78(1): 207-214.

#### SOFTWARE PERFORMANCE

#### Success Rates

analysis. The overall success rate was 96%.





#### Flexibility

- software architecture.
- MS studies.

# **SUMMARY & KEY FEATURES**

- data including distribution information.

workflows.

configuration, and thus requires little training. • Flexibility shown by the ability to adapt or add new data processing

# SOFTWARE AVAILABILITY

(dschriem@ucalgary.ca)

#### **FUTURE WORK:**

- Automatic interference detection and correction.
  - 2D and 3D visualization • Interactive displays
  - mzData/mzXML as data inputs



• HYDRA was used to visually validate XIC peak selection and MS spectra from each run. The figure below shows the run-by-run success rate for HYDRA's automated data

|                                      | Time Required |
|--------------------------------------|---------------|
| evel extraction for 378 mass spectra | ~ 11 minutes* |
| lization of each spectrum for        | ~ 1 hour      |
| euterium distribution measurement    | < 1 second    |

\* Computer: 2.0 GHz AMD cpu with 1G of RAM

#### **MS/MS Capability:**

• Alternate data analysis workflows can be easily added to the

• MS/MS data analysis workflows have been added and will enable the large-scale evaluation of MS/MS data for HDX-

| Workflow:                 |           |  |
|---------------------------|-----------|--|
| Task                      | Configure |  |
| MSMS Generator            | Configure |  |
| MS XY Data Saver          | Configure |  |
| Gaussian Smoothing Filter | Configure |  |
| MSMS Fragment Analyzer    | Configure |  |
|                           |           |  |

- HYDRA provides an automated means of extracting deuterium incorporation
- Visual tools provide a quick way of validating results.
- HYDRA uses step-by-step wizards to walk users through project

• Requests for HYDRA should be directed to Dr. David Schriemer

ACKNOWLEDGEMENTS

Research was funded by NSERC & CRC